1	BWGDAM/B BWGDAM/B BWGDAM/B BWGDAM/B BWGDAM/B BWGDAM/B BWGDAM/B
2	SCIENTIFIC WORKING GROUP ON DNA ANALYSIS METHODS ¹
4 5	Internal Validation of Fully Continuous Probabilistic Genotyping Systems Module
6	Shart Title, Internel DOS Validation Madula
/	Short Title: Internal PGS validation Module
8	Effective XXXXXXX, XX, XXXX
9	
10	Scope
11 12 13 14 15	The SWGDAM Internal Validation of Fully Continuous Probabilistic Genotyping Systems Module contains minimum requirements and best practice guidelines to assist laboratories in designing internal validation experiments as required by the <i>FBI's Quality Assurance Standards</i> <i>for Forensic DNA Testing Laboratories (Forensic QAS)</i> Standard 8.8. A probabilistic genotyping system (PGS) is comprised of software, or software and hardware, with analytical and statistical
16	functions that utilize formulae, models, and algorithms to analyze DNA single source and
17	mixture profiles. The probabilistic genotyping process consists of inferring genotype weights
18	using algorithms, such as the Markov chain Monte Carlo (MCMC) sampling method and using
19 20	those weighted genotypes to calculate likelihood ratios (LKs) assuming one or more pairs of propositions regarding the denors to the forensic profile. Internal validation shall be conducted
∠0 21	using samples of varying quantity quality and type (single source and mixtures) encountered in
22	forensic casework to assess the reliability and determine the potential limitations of the PGS.
23	Laboratories may have varied validation experimental approaches that differ from those listed in

¹ The Scientific Working Group on DNA Analysis (SWGDAM; see <u>SWGDAM.org</u>) is comprised of forensic science practitioners and other experts who represent government laboratories within the U.S and Canada, as well as intra- and international professional groups and academia. SWGDAM recommends to the FBI Director revisions to the *Quality Assurance Standards for Forensic DNA Testing Laboratories* and the *Quality Assurance Standards for DNA Testing Laboratories* and the *Quality Assurance Standards for DNA Databasing Laboratories (QAS)*. SWGDAM provides a forum for its members and invited guests to discuss research, technologies, techniques, and training; and conduct or recommend studies to develop, test, and validate methods for use by forensic laboratories. SWGDAM's Guidelines and Recommendations represent best practices within the discipline. The term "should" is used herein to indicate good practices identified by SWGDAM. "Must" distinguishes mandatory elements, which may be specified in the Quality Assurance Standards for Forensic DNA Testing Laboratories and/or Quality Assurance Standards for DNA Databasing Laboratories.

- this document; such approaches can be utilized if they generate enough empirical data to
- 25 determine the capabilities and limitations of the system and support the laboratory's standard
- 26 operating procedures.
- 27
- 28

Table of Contents

Introduction
General Considerations 4
Defining System Parameters 7
Functional Testing 12
Reliability Testing 15
Accuracy Testing 19
Sensitivity 20
Specificity 22
Precision 23
Additional Testing 25
Additional Features 26
Additional Comments 27
Appendix A: Example Validation Studies 28
References 41
Overview Document (www.swgdam.org)
[Insert link to document before publication]

62 Key Concepts:

63	*	Probabilistic approaches can provide statistical weighting to the potential genotype
64		combinations unlike legacy approaches which consider all combinations equally
65		probable.
66	*	Each laboratory evaluating a PGS must determine which validation studies are relevant to
67		demonstrate the fitness for their use and identify potential limitations of the software.
68	*	Validation studies cannot account for all scenarios that may arise during casework

61

- examinations; however, laboratories should attempt to cover the range of variation expected to be encountered with forensic samples.
- 70 71

69

72 Introduction

A probabilistic genotyping system (PGS) is commonly employed as a software tool to assist the 74 75 DNA analyst in the interpretation of forensic DNA typing results. In accordance with the FBI's 76 Quality Assurance Standards for Forensic DNA Testing Laboratories (QAS), it is not intended to replace the human evaluation of the results or the human review of the results prior to reporting 77 like an Expert System does. The analyst will need to employ manual analysis, as necessitated by 78 the software, before employing the PGS. For example, the analyst may be required to estimate 79 80 and use a specific number of contributors (NOC) to run a PGS analysis (including deconvolution and statistical calculations), or to assess whether typing results should be interpreted or not based 81 on the quality of the data. 82

83

84 Probabilistic genotyping reduces subjectivity in the analysis of DNA typing results and is

- particularly useful for low-level DNA samples (i.e., those in which the quantity of DNA for one 85
- or more contributors is such that stochastic effects may be observed) and complex mixtures (i.e., 86
- mixture profiles that may exhibit evidence of three or more contributors, degradation, and/or 87
- stochastic variation). Many legacy statistical approaches applied to mixtures, such as a combined 88
- 89 probability of inclusion, may consider all interpreted genotype combinations to be equally
- 90 probable, whereas a probabilistic approach can provide a statistical weighting to the potential
- genotype combinations (e.g., based on allele/peak intensity). Probabilistic genotyping does not 91
- 92 utilize a stochastic threshold but instead accounts for the possibility that an allele may have 93 dropped out or conversely that an allele may have dropped in. In making greater use of the DNA
- profile information and eventually comparing potential DNA contributors, probabilistic 94
- 95 genotyping improves the ability to distinguish true contributors and non-contributors compared
- to legacy (binary) interpretation methods. 96
- 97

- 98 To ensure optimal PGS performance, the laboratory should verify all hardware and software specifications have been met prior to beginning validation studies. Laboratories should also be 99 aware of the features and limitations of the PGS they are implementing, and their impact on the 100 validation process. Depending on the models applied by the software, prerequisite studies may 101
- be required to, for example, establish parameters for allele drop-out, drop-in, or stutter 102
- expectations. Each laboratory evaluating a PGS must determine which validation studies are 103
- relevant to demonstrate the fitness for their use and identify potential limitations of the software. 104
- 105

Laboratories should use samples amplified and subjected to capillary electrophoresis using all 106 internally validated methods and conditions expected to be applied during casework. This will 107 allow laboratories to assess how the validated amplification chemistries and instruments, as well 108 as the genetic analyzers, will inform the PGS. It is recommended that laboratories use samples 109 whose quantity and quality cover the range of variability encountered by the laboratory in 110 111 casework and have been recently quantified using current laboratory operating procedures.

- 112
- There are two main approaches to probabilistic genotyping and calculating LRs: the semi-113 114 continuous method and fully continuous method.
- The semi-continuous method focuses on the alleles present or absent in the profile and 115 considers all possible genotype combinations of the observed alleles equally, in 116 117 conjunction with probabilities of drop-out and drop-in. Analysis parameters such as peak
- height variation, mixture ratios and stutter percentages are not typically utilized by semi-118

continuous software systems, although these elements may be considered during the 119 initial manual evaluation of the data. 120 The fully continuous method generally utilizes information such as peak heights, stutter 121 percentages and peak height ratios as well as probabilities of drop-in and drop-out. The 122 weighting of genotype combinations as more or less probable may be inferred from the 123 data through methods such as MCMC samplings from probability distributions. 124 125 PGSs model data in varying ways. One PGS may require laboratory-specific calibration to create 126 more informative prior data distributions while another may use generic prior distributions, 127 making such calibration unnecessary. As a result, some studies may be necessary for one PGS 128 129 but not for another. 130 These guidelines address studies required for parameter setting and the validation of a fully 131 continuous PGS in conjunction with a multiplex autosomal STR typing kit and may be suitable 132 for evaluating modifications to existing laboratory operating procedures. Additionally, some 133 studies described herein may also be suitable for evaluating a semi-continuous PGS. 134 135 Validation studies cannot account for all scenarios that may arise during casework examinations; 136 however, laboratories should attempt to cover the range of variation expected to be encountered 137 138 with forensic samples. Following implementation, laboratories should review results and if necessary, conduct supplemental studies to improve workflow, thresholds and/or interpretations. 139 140 This module should be used in conjunction with the SWGDAM Validation Guidelines for DNA 141 Analysis Methods: Overview Document (https://www.swgdam.org/publications). The studies 142 herein are not synchronized to the Forensic QAS; instead, they are presented in a suggested order 143 to streamline testing and conserve resources such as time, reagents, samples, and consumables. 144 Both documents can be referred to for general background information regarding validation and 145 definition of terms. Materials provided by the PGS developer can also be used as a resource for 146 validation, training, and application. Example validation studies are provided in Appendix A. 147 148 149 **GENERAL CONSIDERATIONS** 150 151 1. Overarching PGS Validation Concepts 152 1.1. To identify aspects of the PGS that should be evaluated through validation studies, the 153 laboratory should document, or have access to documentation, that explains how the 154 155 software performs its operations, to include: 156 157 1.1.1. the methods of analysis and statistical formulae 158 159 1.1.2. the data to be entered in the system 160 1.1.3. the operations performed by each portion of the user interface 161 162 1.1.4. the workflow of the system; and 163 164

165		1.1.5. the system reports, diagnostic values, or other results.
166		
167		1.2. The samples selected for validation (both single source and mixtures) should cover a
168		range of characteristics that are representative of those typically encountered by the
169		testing laboratory. Data should be selected to challenge the system's capabilities and
170		identify any limitations. The same data (or a subset thereof) may be used for multiple
171		studies to test the different applications of the PGS; however, software developer
172		instructions may be more specific about data sharing during validation/customization.
173		
174		
175	2.	System control – Installation and setup
176		
177		2.1. The laboratory should verify that the computers running the software meet or exceed the
178		recommended specifications (e.g., sufficient RAM, at least the minimum number and
179		type of processors, and appropriate operating system), that the PGS has been properly
180		installed, and that the initial software configurations are correct.
181		
182		2.2. The laboratory should, where possible, ensure the following system control measures are
183		in effect:
184		
185		2.2.1. Every software release should have a unique version number. This version
186		number should be referenced in any validation documentation or published
187		results.
188		
189		2.2.2. Security protection should be used to ensure only authorized users can
190		access the software and data.
191		
192		2.2.3. Audit trails are available to track changes to system data and/or
193		verification of system settings applied each time an analysis or comparison is run.
194		
195		2.2.4.User-level security should be employed to ensure that system users only perform
196		authorized actions. For instance, access to alter validated analytical parameters
197		should be restricted to approved personnel, if possible.
198		
199	3.	Internal validation
200		3.1. Internal validation of a PGS is the accumulation and assessment of test data within the
201		laboratory to demonstrate that the established parameters, software settings, formulae,
202		algorithms, and functions perform as expected. In accordance with the QAS, internal
203		validation data may be shared by all locations in a multi-laboratory system. In a multi-
204		laboratory system, however, functional and reliability testing should be conducted at
205		each site to ensure the software operates as expected. If conducted within the same
206		laboratory, developmental validation studies may satisfy some of the elements of the
207		internal validation guidelines.
208		
209		3.2. To identify data features (e.g., minimum quality requirements, NOC) that render a
210		profile suitable or unsuitable for probabilistic genotyping, the laboratory should test data

211 212	across a range of characteristics that are representative of those typically encountered by the testing laboratory. Data should be selected to challenge the system's capabilities and
213	identify limitations.
214	
215 216	3.2.1. It is critical to include challenging single source samples and complex mixtures with low-level contributors during internal validation, as the data from such samples
217	should be evaluated thoroughly and generally help to define the software's
218	limitations and inform laboratory protocol. Sample and/or data types which may not
219	be suitable for PGS analysis should also be included.
220	
221	3.2.2. While some manual comparisons resulting in exclusion of a reference sample may
222	be evident without the use of a PGS, these types of comparisons should still be
223	included in validation testing to verify that the software performs as expected.
224	
225	DEFINING SYSTEM PARAMETERS (PREREQUISITE STUDIES AS NECESSARY)
226	4. System Parameters – Prerequisite Studies May be Necessary
227	
228	4.1 Depending on software requirements, prerequisite studies may be required to inform the
229	modeling parameters of the PGS software. If a laboratory uses more than one genetic
230	analyzer, consideration should be given to sensitivity variation between instruments prior
231	to defining PGS parameters. Modeling parameters may need to be established for each
232	amplification kit, platform, and/or set of variable DNA typing conditions utilized by the
233	laboratory. For example, any variations in the amplification, post-amplification, and/or
234	electrophoresis procedures used by the laboratory to increase or decrease the detection of
235	alleles and/or artifacts must be evaluated. These parameters may include:
236	
237	4.1.1. Analytical threshold (AT)
238	
239	4.1.2. Allele drop-in expectations
240	
241	4.1.3. Stutter expectations
242	1.1.4 Seturation limit (dynamic range) of the genetic analyzer: or
245	4.1.4. Saturation mint (dynamic range) of the genetic analyzer, of
244	4.1.5 Allelic neak beight variation (including allelic drop-out)
245	4.1.5. Allene peak height variation (including allene drop-out).
240	4.1.5.1 Intra-locus neak height
247	+.1.5.1. Intra-toeus peak neight
240	4152 Inter-locus neak height
250	4.1.5.2. Inter focus peak height
251	4.2 For PGSs that require laboratory-specific modeling parameters to be established internal
252	validation studies should be performed using the established parameters. The dataset used
253	to establish the lab-specific parameters must be different from the dataset used to
254	validate the software. The samples used to define the lab-specific parameters and to
255	conduct validation testing must be generated using identical amplification and capillary

256
257
258

electrophoresis conditions but may be comprised of previously generated laboratory data (e.g., data used for a multiplex kit validation study).

- 259 5. Analytical Threshold
- 5.1. The Analytical Threshold (AT) is defined as the value where a true DNA signal can be
 reliably distinguished from instrument noise. This parameter is typically determined
 during validation of the associated amplification kit and genetic analyzer. Depending on
 the PGS used, this value(s) or another value(s) recommended by the software developer
 is used as the lower bound below which a DNA signal is not considered.

267 6. Allele drop-in

6.1. Study purpose

- 6.1.1. Allele drop-in is typically defined as a non-reproducible observance of a peak within a profile. Most often it is observed as the presence of one or two low-level peaks within a profile, where it is not possible to establish a source for the alleles observed.
- 6.1.2. Depending on the PGS being used, the presence of allele drop-in within an
 evidence sample can be assigned a probability as a lab-defined parameter. This
 probability is factored into the modeling of the PGS when considering potential
 genotypes of the contributor(s) to a sample. A drop-in peak height (RFU) maximum
 can also be determined, and if implemented, peaks detected above this threshold
 would not be considered as potential drop-in to preserve modeling and software run
 times.

6.2. Study considerations

- 6.2.1. The laboratory should monitor the detection of drop-in peaks with validation and previous casework negative controls (including extraction reagent blanks). Drop-in can also be assessed with positive controls to supplement the number of samples although drop-in may be masked by allelic peaks.
- 6.2.2. Depending on the PGS and the amount of drop-in observed, the laboratory may choose to model the probability of drop-in as a frequency or as a distribution correlated to peak height.
- 295 6.3. *Study outcome*
 - 6.3.1. A drop-in frequency is calculated using the number of drop-in peaks observed divided by the total number of autosomal loci (number of autosomal loci multiplied by the number of samples) evaluated.

301		6.3.2. Based on the number of drop-in peaks observed, and if the PGS allows for it, a drop in fractionary may alternatively be modeled as a distribution correlated with
302		arop-in frequency may alternatively be modeled as a distribution correlated with
303		peak neight. A drop-in peak neight (RFO) maximum can also be determined based
304		on the data.
305	7	Stuttor arractations
207	/.	Simer expectations
200		7.1 Study numerose
200		7.1. Study purpose
309		7.1.1 Expected stuttor ratio values should be determined for each type of stuttor that
211		yill be medeled by the chosen DGS for each loops within the laboratory's
212		amplification kit. Stutter ratios may need to be determined per locus and/or per
31Z 212		allele depending on the DCS software. Similar to drop in a maximum stutter ratio
212		ancie, depending on the FOS software. Similar to drop-in, a maximum studer ratio
314 215		call also be estimated to assist with modeling and software run times.
315		7.2. Study considerations
310		1.2. Study considerations
31/		7.2.1 If outomizing expected stutter ratios for the DCS it should be determined which
210		7.2.1. If custoffizing expected static ratios for the POS, it should be determined which
319		include one repeat charter ("healt") on longer then the moment allele ("forward") two
320		include one repeat shorter (back) or longer than the parent affect (forward), two
321		repeats shorter than the parent allele ("half heal?"). This may your from loops to
322		base pairs shorter than the parent affele (nan-back). This may vary from focus to
323		locus.
324		7.2.2. It may be recorden to lower the analytical threshold to increase detection of
325		7.2.2. It may be necessary to lower the analytical threshold to increase detection of tunical stutter tunes within a multiplay kit. Denors should be sought out for this
320		study to maximize accurace of alleles and stutter types
327		study to maximize coverage of aneles and studier types.
328		7.2.3 When there is ambiguity in determining the presence of a stutter peak at a
229		<i>1.2.3.</i> When there is antiguity in determining the presence of a stutter peak at a particular locus such as alleles augmented by stutter (as a beterozygote allele that is
221		in the back stutter position of the sister allele, ex. 16, 17) and stutter bracketed by
222		two alleles (e.g., stutter peak 16, for a beterozygote pair of 15, 17) the data at that
222		locus should be removed from the study
334		locus should be removed from the study.
335		7.3. Study outcome
336		, ist study outcome
337		7.3.1 Once typical stutter ratio values are captured empirically, the data is examined to
338		determine the best fit regression for per-allele estimates of stutter
339		determine the best in regression for per unere estimates of station.
340		7.3.2. Linear stutter ratio regressions created for each locus (by allele and/or the LUS)
341		are evaluated to determine the most appropriate model for each locus for use within
342		the PGS.
343		
344		7.3.2.1. Outliers from the regression lines should be investigated to determine if they
345		should remain within the dataset or if additional amplifications and/or
346		donors are needed.

347	
348	7.3.3. If neither regression by allele nor LUS appears to be a good fit for modeling the
349	stutter at a particular locus, average observed values for stutter ratios per allele can
350	be used where data (e.g., at least five observations) are obtained.
351	
352	7.3.4. A stutter ratio maximum can also be determined based on the data.
353	
354	7.3.4.1. For example, the laboratory can apply the maximum stutter values observed
355	within the dataset or a stutter value that includes a selected percentage of the
356	values in the dataset.
357	
358	8. Saturation limit
359	
360	8.1. Study purpose
361	
362	8.1.1. Depending on the PGS, the laboratory may decide to evaluate and set a saturation
363	level for PGS lower than that of the genetic analyzer.
364	
365	8.1.1.1. If interpreting a profile with off-scale data, then the saturation threshold
366	may be an important parameter within the PGS to determine when the
367	height of a peak, and any relative amount of corresponding stutter product,
368	is accurately represented or when it reaches a height at which it is no longer
369	accurately measured.
370	
371	8.2. Study considerations
372	
373	8.2.1. The saturation limit is typically instrument/platform-specific determined by the
374	manufacturer and the instrument hardware and software.
375	
376	8.2.2. For a PGS that uses peak heights to model the genotypes and/or stutter ratios of
377	the contributor(s) to the sample, it is important to assess the point at which the
378	instrument is no longer able to accurately assign peak heights due to saturation. The
379	actual saturation point for an instrument should be assessed to determine if it is
380	lower than what is automatically flagged by the instrument software or conversely.
381	to confirm that the instrument software is properly flagging the off-scale data.
382	
383	8.3. Study outcome
384	
385	8.3.1. The data collected from this study can be used to define an approximate saturation
386	point for the genetic analyzer by direct comparison of the observed allelic peak
387	heights to the expected allelic peak heights. Expected allelic peak heights can be
388	determined based on the observed back stutter peak heights in combination with
389	expected average back stutter ratios.
390	

391	8.3.2. The peak height value (RFU) at which the observed peak heights of the allelic
392	peaks begin to diverge from a linear correlation with the expected allelic peak
393	heights represents the approximate point at which quantitation becomes inaccurate.
394	
395	8.3.3. This value can also be used to provide guidance for when saturated peak(s) are
396	encountered within casework data.
397	
398	8.3.3.1. For example, the laboratory may determine that if a DNA profile contains
399	saturated peaks, it may need to be reanalyzed using a dilution or alternate
400	typing condition before interpretation using the PGS. Alternatively, the PGS
401	may incorporate the saturation value into the modeling of potential stutter
402	neaks.
403	P. Carlos
404	9. Allelic and stutter neak height variation (including intra-locus neak height and inter-locus
405	neak height)
406	pour noight)
407	9.1 Study nurnose
408	<i>5.11. Study purpose</i>
409	9.1.1 Peak heights are inherently variable, both at the intra-locus and inter-locus levels
410	y.i.i. i car heights are inherently variable, both at the initia focus and inter focus fevers.
411	9.1.1.1 Depending on the PGS, a range of profiles can be used to model the allelic
412 //12	and stutter neak height variability observed within the laboratory. This
412 413	variability parameter is then applied as prior expectations within the PGS
413 A1A	during the deconvolution process
414 //15	during the deconvolution process.
415	
410	9.2 Study considerations
417 110	5.2. Study consulerations
410	0.2.1 Single source profiles from known donors can be used to determine the peak
419	height variability allelic drop out and heterozygote peak height ratio variation
420	observed within a laboratory
421	observed within a laboratory.
422	0.2.1.1. The study should include amplification of samples from multiple donors with
425	yarving DNA template amounts. The DNA profiles should encompass the
424	range of profiles likely to be encountered in casework from low level partial
425	profiles to full profiles approaching the previously determined saturation
420	point. Profiles generated from DNA template amounts below the laboratory's
427	minimum input amount if applicable, should be included within the detest
420	since data from this study will be applied to mixed DNA profiles which may
429	since data from this study will be applied to mixed DIVA promes which may
430	contain contributors at these levels.
431	0.2 Study outcome
43Z	7.3. Situy outcome
433	0.2.1 The DCS noremator setting module will concrete allele and stutton real-vertices
434	9.5.1. The POS parameter setting module will generate anele and studier peak variance
435	distributions which will inform the modeling of the peak height variation observed
120	in a comple

437	
438	9.3.2. A check for the reasonableness of the intra-locus peak height variance constant
439	can be undertaken by comparison with the heterozygote balance values from the
440	data and evaluating whether sufficient coverage is obtained over a range of expected
441	allelic peak heights.
442	
443	9.3.3. The variance parameters can be further assessed by determining whether there is
444	any correlation between the observed or expected peak heights of the high and low
445	molecular weight alleles within the heterozygote loci included in these studies.
446	
447	9.3.4. These variance parameters are applied during the validation experiments and
448	should be monitored throughout the studies to determine if they are appropriately
449	covering the range of data that will be tested by the laboratory.
450	
451	INTERNAL VALIDATION TESTING
452	10. Functional Testing
453	
454	10.1. Study purpose
455	
456	10.1.1. The functional testing of software with DNA profile interpretation and statistical
457	calculation capabilities demonstrates that the software performs the intended tasks
458	and functions as expected. PGSs often require:
459	
460	10.1.1.1. the import or transcription of data from other software programs
461	
462	10.1.1.2. the application of customized parameter values that inform the modeling
463	used and calculations produced (PGS specific)
464	
465	10.1.1.3. separate DNA profile modeling and the statistical calculation as two
466	distinct functions and
467	
468	10.1.1.4. production of a report detailing diagnostic indicators of the model's
469	success and results.
470	
4/1	10.1.2. When performing an initial validation of a PGS or evaluating a major software
472	upgrade, each of the functions should be assessed to gain general familiarity with
473	me software, its worknow, and any software-specific characteristics of behaviors
474	prior to proceeding with further testing.
4/J 176	10.1.2.1 If a praviously validated software has undergone a minor ravision(s) the
470	same functions should be assessed to demonstrate and ensure that the
477 1178	modification has not unintentionally affected the software's ability to
470 170	not negation has not unificationary affected the software's ability to
480	perform the interface tasks.
-100 //21	10.2 Study considerations
401	10.2. Dumy consuctations

482	
483	10.2.1. DNA profiles used in functional testing should not be overly complex in nature to
484	allow the formation of well-founded, manually derived expectations for
485	comparison.
486	
487	10.2.2. DNA profiles used during functional testing should be single source and mixtures
488	of known origin, with a corresponding known reference profile, or profiles, for
489	comparison.
490	· · · · Ł ·· · · · ·
491	10.2.3 A functional testing study may include an assessment of multiple software
492	elements. Some aspects of functional testing which should be explored include:
493	elements, some aspects of functional testing which should be explored merade.
493	10.2.3.1 Data import:
494 105	
495	10.2.3.1.1. The format and file type required by the PGS must be determined and
450	used for data import. Special considerations regarding the formatting
497	of allele calls should be taken into consideration if applicable
490	or anele cans should be taken into consideration, it applicable.
499	10.2.2.1.2 A DCS may require the import of stutter date which may need to be
500	10.2.3.1.2. A FOS may require the import of stutter data which may need to be replaced after being filtered out during traditional data englysis
501	replaced after being intered out during traditional data analysis.
502	10.2.2.1.2. Some DCSs connet model for a tri allelia la ma micromariante not
503	10.2.3.1.3. Some PGSs cannot model for a tri-allelic focus, microvariants not
504	represented in the allence ladder of alleles without a numerical
505	designation (e.g., alleles labeled with \rightarrow or $<$) which cannot be
506	assigned a numerical designation. Such loci must be omitted from the
507	analysis.
508	
509	10.2.3.1.3.1. The means by which data are omitted from an analysis
510	should be explored to determine whether the modeling is affected
511	by removal of data prior to import into the system, or whether the
512	system provides a mechanism for the removal of data post-import.
513	
514	10.2.3.2. Maintenance and application of selected parameters and settings:
515	
516	10.2.3.2.1. Functional testing of a PGS should determine which parameters and
517	settings are automatically retained from one analysis to the next and
518	which must be selected with each analysis.
519	
520	10.2.3.2.1.1. This provides an understanding of which parameters and settings
521	are global in nature and will be applied to each analysis
522	conducted by the laboratory and which will vary from analysis to
523	analysis as determined by validation and policy.
524	
525	10.2.3.3. General profile deconvolution:
526	-

527	10.2.3.3.1. The deconvolution of DNA profiles of known origin and make-up,
528	further characterized by manually derived expectations, serves as an
529	initial evaluation of the parameters and settings established to inform
530	the PGS and as a preliminary evaluation of the modeling.
531	
532	10.2.3.3.1.1. The results of the software's modeling should be assessed to
533	determine how closely the modeling fits the previously
534	established expectations from the manual interpretation and
535	known make-up of the DNA profile.
536	
537	10.2.3.4. Assignment of LRs:
538	
539	10.2.3.4.1. At least one known contributor and one known non-contributor
540	should be compared to each single source and mixture profile
541	analyzed during functional testing.
542	
543	10.2.3.4.1.1. In general, the LR of the known contributor should be reflective
544	of their contribution to the sample. Each non-contributor should
545	result in an exclusion (LR of 0) or favor the alternate hypothesis
546	(LR less than1).
547	
548	10.2.3.4.1.2. A PGS may produce more than one LR (sub-sub-source, sub-
549	source, etc.); if so, each LR produced should be reflective of the
550	contribution, or lack thereof, of a known reference sample to the
551	profile.
552	
553	10.2.3.5. Evaluation of system report/results:
554	
555	10.2.3.5.1. Result reports from the PGS (e.g., whether printed, electronic, or a
556	combination of both) should be generated to ensure they are able to
557	be successfully produced in a format that can be maintained in a case
558	file.
559	
560	10.2.4. Reports should also be evaluated to ensure their completeness to include all
561	expected sections, diagnostic indicators, and results of the modeling. These
562	elements do not require separate studies unless an element is not performing as
563	expected and necessitates detailed exploration.
564	
565	10.3. Study outcome
566	
567	10.3.1. Overall, functional testing:
568	
569	10.3.1.1. provides a foundational assessment of a PGS's utility
570	
571	10.3.1.2. explores procedures for the basic operation of the software
572	

573	10.3.1.3. establishes familiarity with the operation of the software; and
575	10.3.1.4. may identify areas of potential further evaluation.
576	
577	10.3.2. Functional testing does not rigorously challenge the software or demonstrate its
578	limits, but rather serves to demonstrate that the PGS is operational and capable of
579	further testing.
580	
581	10.3.2.1. For laboratories validating a new version of a previously validated PGS,
582	functional testing may be conducted simultaneously with other studies.
583	
584	10.3.2.1.1. The way functional testing is evaluated, and the results of such testing
585	must be documented.
586	
587	10.3.3. Functional testing should aid the laboratory in defining file types and the format
588	in which the data must be imported.
589	
590	10.3.3.1. Software-specific data formatting requirements should be documented for
591	inclusion in the standard operating procedure.
592	
593	10.3.4. Maintenance of parameters and settings should also be documented during
594	functional testing to ensure ongoing consistency of application during validation
595	testing and casework use.
596	
597	10.3.4.1. Subsequent validation studies may necessitate that a parameter be
598	purposefully changed to study the effect.
599	
600	10.3.5. The results of deconvolutions conducted during functional testing should mirror
601	the expectations formed by manual interpretation prior to analysis using the
602	software.
603	
604	10.3.5.1. Any analyses demonstrating divergence from reasonable expectation should
605	be investigated, with causes and resolutions thoroughly documented.
606	10.2.6 I Do meduced from comparisons to known references during functional testing
607	should as with deconvolutions, he reflective of the expected contributions of the
600	should, as with deconvolutions, be reflective of the expected contributions of the
609	known morviduais present in the profile.
610	10.3.6.1 Any LRs demonstrating divergence from reasonable expectations should
612	also be investigated, with causes and resolutions documented
612	also be investigated, with eauses and resolutions documented.
61/	10.3.7 Familiarity with the organization and content of the report or other system results
615	should be gained during the functional testing
616	should be gained during the functional testing.
510	
617	11. Reliability Testing ("physical" reliability and "usability limits")
618	

619	11.1.	Study purpose
620	11.1.1.	Reliability testing is the process of testing a software program beyond its
622		functional aspects to ensure it works appropriately in the laboratory environment
623		and is specific to security, software communication and data transfer, stability of
624		settings and load testing. Reliability testing of a software program or system such
625		as a PGS requires that the software/system be technically evaluated to ensure it
626		operates according to expectations in the virtual and physical environment
627		(network) in which it resides and is used.
628		
629	11.	1.1.1. At a minimum, this may include physically testing multi-user or multi-site
630		scenarios, direct-access and network/server-access scenarios, and interaction
631		with other software programs. It may be useful to have a network
632		administrator available to assist with this testing.
633		
634	11.	1.1.2. For example, a PGS is installed on a computer network; however, due to
635		firewall settings on the individual user computer, the user is unable to access
636		the software. As a result, permission and settings modification was needed
637		from the network administrator to bypass the firewall to be able to run the
638		software.
639		
640	11.1.2.	. Reliability testing should also assess the usability limits of the PGS's functions.
641		In this context, "usability limits", or operational limits, are considered defining
642		conditions which cause a failure of the software to function for the user and may
643		be indicated by instances such as the receipt of an error, failure of the analysis to
644		proceed, the inadvertent loss of data on import, or the unexpected closure of the
645		software during analysis.
646		
647	11.	1.2.1. Assessing the usability limits of a PGS may be achieved by both targeted
648		approaches as well as through conducting other studies.
649		
650		11.1.2.1.1. Some potential usability limits of PGS include, but are not limited
651		to, the NOC which can be analyzed, DNA profiles exhibiting excessive
652		dropout, or a contributor assessment where the number of alleles cannot
653		be explained by the NOC input into the software (e.g., NOC set at 2
654		with $5+$ alleles at a locus). This should not be confused with the limits
655		of DNA profile interpretation or modeling indicators but are rather
656		limits where the software will no longer operate.
657		
658		11.1.2.1.2. For instance, failure to complete the analysis of a six-contributor
659		mixture due to insufficient computer memory represents a usability
660		limit of the software.
661		
662		11.1.2.1.3. In addition, some PGSs will not proceed if an off-ladder (OL)
663		allele call has not been assigned a numerical value in the import file.
664		-

665	11.1.3	Some relia	bility testing reveals physical limitations of the PGS, whereas other
666		studies ma	y support a laboratory's decision to limit analyses in the software
667		before reac	hing the usability limit.
668			
669	11.2.	Study cons	siderations
670			
671	11.2.1	1. When asse	ssing the physical (and virtual) reliability and usability limits of a PGS,
672		the followi	ng should be considered:
673			
674	11	1.2.1.1. The	e virtual environment in which the software resides should be
675		evaluate	ed.
676			
677		11.2.1.1.1.	A PGS may be equipped to reside on a shared network or may not be
678			compatible with a shared network due to security, access, or system
679			specification considerations.
680			
681		11.2.1.1.2.	The operating system or server on which the PGS will reside must be
682			compatible with the functionality of the software.
683			
684	11	1.2.1.2. When	n a PGS is intended for use in multiple locations and/or by multiple
685		users	, the effect of utilizing the software in these conditions should be
686		asses	sed to identify potential issues such as overwriting, limits to access,
687		and l	icensing requirements and needs.
688			
689	11	1.2.1.3. The s	ecurity of parameters and settings, and their potential for alteration,
690		shoul	d also be assessed.
691			
692		11.2.1.3.1.	Developer-recommended and/or validation-derived settings should be
693			evaluated to understand the level of access required to change them
694			and ensure they are maintained from one analysis to another.
695			
696		11.2.1.	3.1.1. Testing should assess how to identify whether a parameter or
697			setting has been changed from a previously defined value.
698			
699		11.2.1.3.2.	A PGS should also be evaluated for its interactions and/or dependence
700			on other software programs or frameworks.
701			
702		11.2.1.3.3.	The programming language and updates to the programming language
703			as well as any software that either imports information to or exports
704			information from the PGS (e.g., genotyping software, CODIS entry
705			software, etc.) should be assessed for compatibility and completeness.
706			
707		11.2.1.4	Usability limits are often observed through conducting internal
708			validation studies and may not require a defined reliability testing
709			study or studies. Even if reliability testing does not constitute a formal
710			study, how reliability testing was assessed must be documented.

711		
712	11.3.	Study outcome
713		
714	11.	3.1. A PGS must be operational in the physical (and virtual) environment in which it
715		resides, whether that be on a shared network or isolated server or workstation.
716		
717		11.3.1.1. The level of security needed should be determined based on how many
718		analysts require access, the structure and requirements of licensing, and the
719		security requirements of the laboratory or laboratory system.
720		
721		11.3.1.2. If the laboratory is part of a laboratory system, a PGS may also be used in
722		multiple locations and/or by multiple users concurrently, where potential
723		issues such as overwriting, limits to access, and licensing requirements can
724		be resolved through reliability testing.
725		
726	11.	3.2. Reliability testing further demonstrates the stability and/or accessibility of
727		parameters and settings, and their potential for alteration.
728		
729		11.3.2.1. Developer-recommended and/or validation-derived settings should be
730		maintained from one analysis to another.
731		
732		11.3.2.2. If a parameter or setting is purposefully or accidentally changed from a
733		previously defined value, the results/report of the PGS should include the
734		change and the laboratory should have a policy to define a check of the
735		parameters used.
736		
737	11.	3.3. Communication and proper data transfer should be demonstrated between the
738		PGS and data analysis software that imports data into the PGS, between the PGS
739		and CODIS entry formatting software (if applicable), and any other software that
740		imports information or extracts information from the PGS.
741		
742		11.3.3.1. Barriers to communication and data transfer can be identified and should be
743		resolved during this phase of testing.
744		
745	11.	3.4. Assessing the usability limits of a PGS may define elements or bounds which
746		could result in a failure of the software, such as:
747		
748		11.3.4.1. A maximum number of contributors (NOC) that can be analyzed using the
749		software
750		
751		11.3.4.2. Formatting or data importing limits
752		
753		11.3.4.3. A minimum number of DNA alleles observed or number of loci with genetic
754		data required for analysis, in combination with the estimated NOC present
755		

756		11.3.4.3.1	. The effects of contributor assessments of fewer contributors than
757			the data (allele count) indicates could provide support for resolving
758			casework NOC assessments which result in similar errors and be
759			included in troubleshooting procedures.
760			
761	11.3.5	. For any el	ements evaluated during reliability testing, observations must be
762		recorded,	and the documentation retained with other validation materials.
763			
764	11.	.3.5.1. Som	e of these elements may be appropriate for inclusion in the validation
765		sum	mary itself.
766			
767		11.3.5.1.1	. For instance, a limit to the NOC the software can analyze would be
768			appropriate for inclusion in a validation summary.
769			
770		11.3.5.1.2	. Laboratory administrative IT security requirements may be defined
771			by policy and may not need explicit reiteration in the validation
772			summary.
773			
774	12. Accuracy		
775			
776	12.1.	Study pur	pose
777			
778	12.1.1	. The object	tive of accuracy studies is to demonstrate the ability of a measurement
779		to give res	ults close to a true value.
780			
781	12.	.1.1.1. With	in a PGS internal validation, accuracy studies may include
782		dem	onstrating:
783		10 1 1 1 1	
784		12.1.1.1.1	the ability of the PGS to accurately assign mixture proportions
785		101110	
786		12.1.1.1.2	genotype assignments conform to qualitative expectations
/8/		10 1 1 1 2	
788		12.1.1.1.3	. the LR is accurately calculated; or
789		121114	for some materia, that your data files are compating analyzed
790		12.1.1.1.4	. Ior some systems, that raw data mes are correctly analyzed.
791	12.2	Study cor	sidenations
792	12.2.	Siuay con	suerations
793	12 2 1	A laborate	any should ansure that the complex used in ecouropy studies are within
794	12.2.1	the renge	of sample complexity (e.g. NOC mixture ratios, and templete amounts)
706		that a labo	ratory expects to interpret in casework analysis
707		that a labo	ratory expects to interpret in casework analysis.
702	10	211 The	mixtures selected for these studies may be used for multiple studies as
799	12	2.1.1. 1110 annl	icable to cover the appropriate range of sample complexity
800		appi	couse, to cover the appropriate range of sample complexity.

801	12.2.1.2. The focus of this study should be on the known composition of mixtures and
802	how that is reflected in mixture proportions and genotype weights.
803	
804	12.2.2. Single source samples should be used to verify that a basic LR calculation is
805	being done correctly.
806	
807	12.2.2.1. The LR generated by the PGS should be similar to that calculated by hand
808	(inverse of a random match probability (RMP)) or another validated
809	software package (e.g., Popstats).
810	
811	12.2.3. The LR assignments from sensitivity and specificity studies should support the
812	accuracy of the PGS calculations for both true contributors and non-contributors
813	and should be reflective of the data and informed expectations.
814	1
815	12.2.4. The genotype weight and mixture proportion estimates made by the PGS can be
816	compared to the genotypes and intended mixture composition of the samples used
817	to construct the mixtures. Mixture proportion estimation can also be compared to
818	manually estimated proportions at loci with no allele sharing.
819	
820	12.2.5. The accuracy of the allele call determination can be accomplished by various
821	methods if the import for the PGS is raw data files.
822	
823	12.2.5.1. Previously analyzed proficiency test samples and/or NIST-traceable samples
824	can be used and verified against their known profiles. In addition, sample
825	allele calls and approximate RFUs can be assessed by comparing them
826	against a similar validated allele-calling program.
827	
828	12.3. Study outcome
829	
830	12.3.1. Accuracy studies should confirm that the LR obtained from a true contributor
831	comparison to a single source profile is consistent with a calculation of 1/RMP.
832	
833	12.3.2. Accuracy studies using mixture profiles should demonstrate consistency in:
834	
835	12.3.2.1. the PGS-estimated mixture proportions compared to the known mixture
836	proportions.
837	proportions,
838	12.3.2.2 the PGS-estimated genotype weight assignments compared to the manual
839	assessment of the profile and the known contributor genotypes.
840	assessment of the profile and the fillowin contributor genetypes,
841	12.3.2.3, the direct comparison of allele calls and peak heights observed using
842	analysis software to those reported by the PGS
843	unuffile software to those reported by the root.
844	12.3.3 Any analyses demonstrating divergence from reasonable expectations and/or
845	known values should be investigated with causes and resolutions documented
846	The lab should determine if the discordant data will remain within the dataset or if
0.0	The fue should determine if the discolutint dutit will remain writin the dataset of if

847	additional data are needed to gain an u	inderstanding of the circumstances which
848	may affect the analysis.	
849		
850	13. Sensitivity Testing	
851		
852	13.1. Study purpose	
853		
854	13.1.1. A sensitivity study will demonstrate a	nd challenge the ability of a PGS to reliably
855	provide support for the presence of a l	known contributor's DNA over a broad
856	range of mixture proportions, template	e concentrations, and NOC observed with
857	evidentiary typing results.	
858		
859	13.1.1.1. For each DNA profile being test	ed for sensitivity, the true contributor(s) is
860	compared to the deconvoluted D	NA profile.
861		
862	13.1.1.2. The occurrence and range of LR	values greater than one for true
863	contributors (true positive) provi	ide the laboratory with the sensitivity of the
864	system and context for providing	g a verbal equivalent (if chosen to do so) of
865	the calculated LR.	
866		
867	13.1.1.3. A sensitivity study will also ider	ntify the proportion of the profiles described
868	above for which true contributor	s yield a LR value less than one, as well as
869	the range of these values. The o	ccurrence and range of LR values less than
870	one for true contributors should	be evaluated to determine whether they are
871	due to sample quality or softwar	e failure.
872		
873	13.2. Study considerations	
874		
875	13.2.1. The sensitivity studies must include,	and may exceed, the range of sample
876	complexity encountered by the laboration	atory, representing the bounds of the
877	validation study which will be used t	o inform the future protocol.
878		
879	13.2.2. Laboratories should incorporate DNA	A profiles into the study that are expected to
880	show decreased sensitivity. The DNA	A profiles represented in this study should
881	include, but are not limited to, the fol	llowing complexities:
882		
883	13.2.2.1. Profiles that exhibit a high NC	C
884		
885	13.2.2.2. Profiles with low template am	ounts
886		
887	13.2.2.3. Profiles with disparate contrib	utor ratios/proportions
888		
889	13.2.2.4. Profiles with equal contributor	ratios/proportions
890		
891	13.2.2.5. Profiles with one or more degr	aded contributors
892		

893	13.	2.2.6. Profiles with inhibition patterns and
894	12	227 Destites with a bight despess of all the desire that we are without any
895	13.	2.2.7. Promes with a high degree of affele sharing between contributors
896	12 2 2	The leberatory should examine the constitutive for true contributors correspond to
897	15.2.5.	renge of single source and minture profiles included in these studies
898		range of single-source and mixture promes included in these studies.
899	12.2.4	A laboratory should test the around truth NOC years the assigned NOC (e.g. \downarrow 1
900	15.2.4.	A laboratory should test the ground truth NOC, vary the assigned NOC (e.g., ± 1
901		impact on consistivity
902		impact on sensitivity.
903	12.2	Study outcome
904	15.5.	Sludy oulcome
905	1221	The DGS's consistivity domonstrates the system's chility to detect true
906	15.5.1.	contributors in a mixture profile, as well as the magnitude of the L Bs as a
907		roflaction of each individual's contribution
908		
909	1227	Sansitivity studies demonstrate the range of LP values that can be expected for
910	15.5.2.	known contributors based on the quality of the date
911		known contributors based on the quanty of the data.
912	13	3.2.1 For samples with low template or high contributor number, the mixture
915	15.	5.2.1. For samples with low template of high contributor number, the linkture
914		to be observed due to the uncertainty in assigning alleles to each
915		contributor in the mixture
017		contributor in the mixture.
010	1333	The sensitivity study identifies and reinforces general trends in the types (and
010	15.5.5.	characteristics) of mixture profiles where a true contributor's LP approaches, or is
919		less than one (e.g., a highly degraded sample minor contributor low template
920		contributor, or high NOC)
921		contributor, or men roce).
923	1334	A mixture component exhibiting limited data results in an increasing level of
924	15.5.1.	uncertainty using any DNA interpretation method and this should not be viewed
925		as a failure of PGS
926		
927	13	3.4.1 True contributor comparisons to limited and undetected data should trend
928	10.	toward a LR equal to one, support for H2, or exclusion.
929		
930	14. Specificity	Testing
931	~F	
932	14.1.	Study purpose
933		
934	14.1.1.	Specificity testing is intended to demonstrate the ability of a PGS to reliably
935		differentiate between non-contributors and true contributors in a DNA profile and
936		will be dependent on the data evaluated as well as the robustness of the
937		settings/parameters within the PGS.
938		

939 940 941	14.1.2.	Evalua have a values	ating specificity requires observing the proportion of non-contributors that LR value of less than one (true negatives), as well as the range of LR s observed.
942 943 944	14.	1.2.1.	For each DNA profile being tested for specificity, the non- contributor(s) is compared to the deconvoluted DNA profile.
945 946 947 948 949	14.	1.2.2.	The occurrence and range of the LR values greater than one for non- contributors (adventitious support) will provide the laboratory with an estimate of specificity performance and the context of the reported LR calculated by the PGS in relation to the quality of data.
950 951 952	14.1.3.	This s reflect	hould be demonstrated using a set of profiles that challenge the PGS and t the range of variation and quality of data observed by the laboratory.
953	14.2.	Study	considerations
954 955	14.2.1.	A labo	pratory should examine a range of sample types when assessing specificity.
956 957		The sa	The specificity of the PGS is affected by the quality of the data
958		Increa	sing the NOC including two or more contributors with approximately equal
959		propo	rtions in the same mixture, decreasing the overall peak heights of the data
960		increa	sing the degree of allele sharing and introducing inhibition or degradation
961		will at	ffect the specificity of the PGS in relation to a given DNA profile.
962			
963	14.	2.1.1.	The specificity studies must include, and may exceed, the range of sample
964 965			complexity encountered by the laboratory, representing the bounds of the validation study which will be used to inform the future protocol.
966			
967	14.2.2.	Labo	ratories should incorporate DNA profiles into this study that are expected to
968		demo	onstrate decreased specificity. Refer to 13.2.2 for a list of example sample
969		types	where sensitivity is expected to decrease.
970			
971	14.2.3.	The r	number of non-contributors tested should be sufficient to result in a
972		spect	rum of LRs from uninformative to exclusion. Any analyses resulting in LRs
973		great	er than one should be scrutinized for the degree of allele sharing and quality
974		of the	e profile.
975			
976	14.2.4.	Knov	vn non-contributor profiles may be obtained from multiple sources,
977		inclu	ding the following options:
978			
979	14.	2.4.1.	DNA profiles derived from laboratory research samples
980			
981	14.	2.4.2.	DNA profiles generated in silico using allele frequencies from the
982			appropriate population database(s)
983			

984 985	14.	2.4.3. DNA profiles obtained from a publicly available source
986 987 988	14.2.5.	A laboratory should test the ground truth NOC, vary the assigned NOC (e.g., ± 1 or 2), and/or use the apparent NOC based on the electropherogram to assess the impact on specificity.
989		
990	14.3.	Study outcome
991	1421	The DCC's modificity of the metalized through this study. As mean strates the
992	14.3.1.	avetom's specificity to distinguish true non contributors in a profile, as well as the
993		magnitude of the LPs as a reflection of quality and quantity of the data
994 005		magnitude of the ERS as a reflection of quanty and quantity of the data.
995	14	3.1.1 The plotted LRs should trend unwards to 1 (and possibly >1) for known
990	14.	non-contributors as less information is available within the profile
998		non-contributors as less information is available within the prome.
999	14.3.2	A mixture component exhibiting limited data results in an increasing level of
1000	1 110121	uncertainty using any DNA interpretation method and this should not be viewed
1001		as a failure of PGS.
1002		
1003	14.3.3.	The specificity study, in conjunction with the information obtained from the
1004		sensitivity study, will provide a demonstration that the PGS is providing expected
1005		levels of discrimination given the quality of the data analyzed.
1006		
1007	14.3.4.	Sensitivity and specificity studies should inform the development of training and
1008		policies regarding the proper characterization (e.g., strength) of a likelihood ratio
1009		statistic.
1010		
1011	15. Precision	
1012		
1013	15.1.	Study purpose
1014		
1015	15.1.1.	The objective of precision studies is to characterize the degree of mutual
1016		agreement among a series of individual measurements, values, and/or results.
1017		
1018	15.	1.1.1. During a PGS validation, precision studies may include the following
1019		assessments, as applicable:
1020		
1021		15.1.1.1.1. Variation in the deconvolution results (e.g., genotype weights and
1022		contributor ratios)
1023		15.1.1.1.2. Variance nonemators (a.g. allele DEU and stutter variance)
1024		13.1.1.1.2. variance parameters (e.g., anele KFU and stutter variance)
1025		15.1.1.1.3 Diagnostic values (a.g., log (likelihood) and Calman Dubin diagnostic)
1020		13.1.1.1.3. Diagnostic values (e.g., log (likelihood) and Gennan-Kubin diagnostic)
1027		UI 15.1.1.1.4 I R values following multiple analyses of the same data
1020 1020		13.1.1.1.T. LIX values following multiple analyses of the same data
-025		

1030 1031	15.	.1.1.2.	The information acquired from precision studies can assist a laboratory in optimizing the PGS analysis parameters as well as understanding how the
1031			completeness and quality of the data influence variation in the modeling
1032			and analysis results.
1034			und undry 515 results.
1035	15.	.1.1.3.	Laboratories can also use the data from precision studies to define specific
1036	10.	.1.1.5.	quality indicators for a PGS analysis for example, the range of expected
1037			diagnostic values and variance parameters.
1038			
1039	15.	.1.1.4.	Defining these values and/or parameters in a standard operating procedure
1040			can assist a laboratory in ensuring the quality of PGS analyses.
1041			
1042	15.2.	Study	considerations
1043			
1044	15.2.1.	. A labo	pratory should ensure that the mixtures used in precision studies are within
1045		the rai	nge of sample complexity (e.g., NOC, mixture ratios, and template amounts)
1046		that a	laboratory expects to interpret in casework analysis.
1047			
1048	15.	.2.1.1.	The mixtures selected for this study should be, at a minimum, the sample
1049			types (complexity) that are expected to yield many genotype possibilities
1050			and exhibit a distribution of contributor weights following deconvolution
1051			with the PGS.
1052			
1053		15.2.1	.1.1. A likelihood should be calculated for each contributor to the profiles.
1054			
1055	15.2.2.	. A labo	bratory may assess the impact of varying PGS analysis parameters (e.g., the
1056		numbe	er of MCMC accepts or the number of chains) on precision.
1057			
1058	15.2.3.	. A labo	pratory may utilize data from other relevant internal studies, as applicable, to
1059		cover	the appropriate range of sample complexity necessary when assessing
1060		precis	ion.
1061			
1062	15.3.	Study	outcome
1063			
1064	15.3.1.	. The ir	formation acquired from the precision studies will enable a laboratory to
1065		optim	ize the appropriate PGS analysis parameters and characterize the variance
1066		observ	ved in the PGS parameters and diagnostics in relation to DNA profile
1067		compl	eteness and quality.
1068			
1069	15.3.2.	. For ex	ample, the primary result of a deconvolution is genotype weights, and the
1070		PGS u	itilizes the genotype weights to assign a LR.
1071			
1072	15.	.3.2.1.]	If a PGS employs an MCMC approach, then the genotype weights and LR
1073			will vary if a PGS analysis is repeated.
1074			

1075	15.3.2.2. The PGS analysis parameters that affect the precision of the genotype
1076	weight estimation (e.g., the number of MCMC accepts) can be assessed, as
1077	described above, with the resultant data used to define the PGS analysis
1078	parameters that provide the desired level of precision.
1079	
1080	15.3.3. The information acquired from the precision studies may also be used to define
1081	laboratory specific quality indicators (e.g., variance parameters, log (likelihood),
1082	and the Gelman-Rubin diagnostic) for a PGS in addition to defining the number
1083	of repeat analyses allowed (or not allowed) for a sample.
1084	
1085	15.3.4. The precision studies described above will allow a laboratory to identify an
1086	expected range for these quality indicators for the sample complexity that the
1087	laboratory expects to interpret in casework analyses and describe trends in these
1088	indicators based on the complexity of the DNA mixture and/or relative strength of
1089	a LR.
1090	
1091	15.3.4.1. Defining acceptable ranges for laboratory specific quality indicators will
1092	provide a mechanism to assess the quality of the PGS analyses performed
1093	within a laboratory.
1094	
1095	15.3.5. These studies, as well as data from other validation studies, should aid the
1096	laboratory in understanding how profile completeness, complexity, and quality
1097	affect the precision of the genotype weights and calculated LR.
4000	
1098	
1098 1099	16. Recommended Additional Testing
1098 1099 1100	16. Recommended Additional Testing
1098 1099 1100 1101	16. Recommended Additional Testing16.1. While some of the following samples may have already been included in the validation
1098 1099 1100 1101 1102	16. Recommended Additional Testing16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples
1098 1099 1100 1101 1102 1103	 16. Recommended Additional Testing 16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples for laboratories to consider for inclusion during validation testing for a thorough
1098 1099 1100 1101 1102 1103 1104	 16. Recommended Additional Testing 16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples for laboratories to consider for inclusion during validation testing for a thorough understanding of their PGS.
1098 1099 1100 1101 1102 1103 1104 1105	 16. Recommended Additional Testing 16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples for laboratories to consider for inclusion during validation testing for a thorough understanding of their PGS.
1098 1099 1100 1101 1102 1103 1104 1105 1106	 16. Recommended Additional Testing 16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples for laboratories to consider for inclusion during validation testing for a thorough understanding of their PGS. 16.1.1. Even though not all these sample types are encountered in casework, having
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107	 16. Recommended Additional Testing 16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples for laboratories to consider for inclusion during validation testing for a thorough understanding of their PGS. 16.1.1. Even though not all these sample types are encountered in casework, having tested them as part of a validation may be beneficial to inform PGS standard
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108	 16. Recommended Additional Testing 16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples for laboratories to consider for inclusion during validation testing for a thorough understanding of their PGS. 16.1.1. Even though not all these sample types are encountered in casework, having tested them as part of a validation may be beneficial to inform PGS standard operating procedures and troubleshooting.
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109	 16. Recommended Additional Testing 16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples for laboratories to consider for inclusion during validation testing for a thorough understanding of their PGS. 16.1.1. Even though not all these sample types are encountered in casework, having tested them as part of a validation may be beneficial to inform PGS standard operating procedures and troubleshooting.
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110	 16. Recommended Additional Testing 16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples for laboratories to consider for inclusion during validation testing for a thorough understanding of their PGS. 16.1.1. Even though not all these sample types are encountered in casework, having tested them as part of a validation may be beneficial to inform PGS standard operating procedures and troubleshooting. 16.2. Many of these samples can be constructed in the laboratory by modifying the .txt file of
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111	 16. Recommended Additional Testing 16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples for laboratories to consider for inclusion during validation testing for a thorough understanding of their PGS. 16.1.1. Even though not all these sample types are encountered in casework, having tested them as part of a validation may be beneficial to inform PGS standard operating procedures and troubleshooting. 16.2. Many of these samples can be constructed in the laboratory by modifying the .txt file of the known references (or mixture profile, depending on the PGS) if actual samples do
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112	 16. Recommended Additional Testing 16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples for laboratories to consider for inclusion during validation testing for a thorough understanding of their PGS. 16.1.1. Even though not all these sample types are encountered in casework, having tested them as part of a validation may be beneficial to inform PGS standard operating procedures and troubleshooting. 16.2. Many of these samples can be constructed in the laboratory by modifying the .txt file of the known references (or mixture profile, depending on the PGS) if actual samples do not exist.
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113	 16. Recommended Additional Testing 16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples for laboratories to consider for inclusion during validation testing for a thorough understanding of their PGS. 16.1.1. Even though not all these sample types are encountered in casework, having tested them as part of a validation may be beneficial to inform PGS standard operating procedures and troubleshooting. 16.2. Many of these samples can be constructed in the laboratory by modifying the .txt file of the known references (or mixture profile, depending on the PGS) if actual samples do not exist.
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114	 16. Recommended Additional Testing 16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples for laboratories to consider for inclusion during validation testing for a thorough understanding of their PGS. 16.1.1. Even though not all these sample types are encountered in casework, having tested them as part of a validation may be beneficial to inform PGS standard operating procedures and troubleshooting. 16.2. Many of these samples can be constructed in the laboratory by modifying the .txt file of the known references (or mixture profile, depending on the PGS) if actual samples do not exist. 16.3. These additional samples can include the following:
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115	 16. Recommended Additional Testing 16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples for laboratories to consider for inclusion during validation testing for a thorough understanding of their PGS. 16.1.1. Even though not all these sample types are encountered in casework, having tested them as part of a validation may be beneficial to inform PGS standard operating procedures and troubleshooting. 16.2. Many of these samples can be constructed in the laboratory by modifying the .txt file of the known references (or mixture profile, depending on the PGS) if actual samples do not exist. 16.3. These additional samples can include the following:
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116	 16. Recommended Additional Testing 16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples for laboratories to consider for inclusion during validation testing for a thorough understanding of their PGS. 16.1.1. Even though not all these sample types are encountered in casework, having tested them as part of a validation may be beneficial to inform PGS standard operating procedures and troubleshooting. 16.2. Many of these samples can be constructed in the laboratory by modifying the .txt file of the known references (or mixture profile, depending on the PGS) if actual samples do not exist. 16.3. These additional samples can include the following: 16.3.1. Challenged samples: profiles demonstrating inhibition and degradation.
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117	 16. Recommended Additional Testing 16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples for laboratories to consider for inclusion during validation testing for a thorough understanding of their PGS. 16.1.1. Even though not all these sample types are encountered in casework, having tested them as part of a validation may be beneficial to inform PGS standard operating procedures and troubleshooting. 16.2. Many of these samples can be constructed in the laboratory by modifying the .txt file of the known references (or mixture profile, depending on the PGS) if actual samples do not exist. 16.3. These additional samples can include the following: 16.3.1. Challenged samples: profiles demonstrating inhibition and degradation.
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118	 16. Recommended Additional Testing 16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples for laboratories to consider for inclusion during validation testing for a thorough understanding of their PGS. 16.1.1. Even though not all these sample types are encountered in casework, having tested them as part of a validation may be beneficial to inform PGS standard operating procedures and troubleshooting. 16.2. Many of these samples can be constructed in the laboratory by modifying the .txt file of the known references (or mixture profile, depending on the PGS) if actual samples do not exist. 16.3. These additional samples can include the following: 16.3.1. Challenged samples: profiles demonstrating inhibition and degradation. 16.3.2. Profiles with genetic anomalies: tri-alleles, heterozygote imbalance (e.g., primer)
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119	 16. Recommended Additional Testing 16.1. While some of the following samples may have already been included in the validation studies as samples typically encountered by the laboratory, there are additional samples for laboratories to consider for inclusion during validation testing for a thorough understanding of their PGS. 16.1.1. Even though not all these sample types are encountered in casework, having tested them as part of a validation may be beneficial to inform PGS standard operating procedures and troubleshooting. 16.2. Many of these samples can be constructed in the laboratory by modifying the .txt file of the known references (or mixture profile, depending on the PGS) if actual samples do not exist. 16.3. These additional samples can include the following: 16.3.1. Challenged samples: profiles demonstrating inhibition and degradation. 16.3.2. Profiles with genetic anomalies: tri-alleles, heterozygote imbalance (e.g., primer site mutation), somatic mutations

1121	16.3.3. Profiles with allele drop-in
1122	
1123	16.3.4. Profiles demonstrating excessive allele sharing resulting in mixtures that appear to
1124	be fewer contributors than they are by allele count (e.g., biological relatives)
1125	
1126	16.3.5. Profiles with artifacts: profiles with unedited spikes, unresolved single base pair
1127	resolution
1128	
1129	16.3.6. Profiles where stutter peaks have been removed or artifacts have been left in (PGS
1130	dependent)
1131	
1132	16.3.7. Profiles with the incorrect NOC (\pm 1 or 2)
1133	
1134	16.3.8. Profiles deconvoluted using unsupported or incorrect assumed known references
1135	
1136	16.4. It is strongly recommended that the laboratory tests any parameter that can be modified
1137	by the user. An example of this is the ability to modify the MCMC settings in the PGS.
1138	As described above, since MCMC is a sampling method, increasing or decreasing the
1139	number of accepts can influence the discrimination (and uncertainty) of the
1140	deconvoluted profiles.
1141	
1142	16.5. A graduated approach allows a laboratory to focus additional testing on factors that can
1143	affect the PGS and ultimately LR results.
1144	
1145	16.5.1. For example, performing deconvolutions on a set of mixtures, with and without an
1146	assumed contributor, will provide valuable information regarding the effect of
1147	conditioning during a deconvolution.
1148	
1149	16.5.1.1. Subsequently, each true contributor can be tested in various combinations
1150	with other contributors and assumed contributors.
1151	
1152	16.5.2. Testing with non-contributors or incorrect NOCs $(\pm 1 \text{ and } 2)$ can demonstrate
1153	how the PGS responds to what may be an incorrect assumption or simply a typo
1154	during data entry.
1155	
1156	17. Additional features/options included in PGS
1157	
1158	17.1. Fully continuous PGSs may include additional functions which may or may not be used
1159	by a laboratory. If the intent is to utilize such function(s), it must be validated prior to
1160	implementation and the results used to inform standard operating procedures and
1161	troubleshooting
1162	u o u o teo filo o ting.
1163	17.2 Not all functions have been described above: therefore, the laboratory must formulate
1164	its own study plan keeping in mind the intended use of the function and $\Omega\Delta S$
1165	requirements
1166	requirements.
1100	

1167	17.3. The studies included and the numbers and types of samples should be selected to
1168	demonstrate and challenge the validity of the feature with respect to its intended use by
1169	the laboratory.
1170	
1171	18. Additional Comments
1172	
1173	18.1. The above studies describe internal validation testing for a fully continuous PGS. When
1174	software updates or modifications are made by the PGS developer, the laboratory must
1175	decide whether the changes result in major or minor revisions to the software.
1176	
1177	18.1.1. Minor updates such as additional data display, print functions or other cosmetic
1178	features will require a functional test prior to implementation.
1179	
1180	18.1.2. Major revisions, such as updates or improvements to program code, calculations,
1181	or modeling, for example, will require functional, reliability and regression testing
1182	to ensure the PGS still functions as expected; precision, accuracy, sensitivity, and
1183	specificity studies may be needed, as applicable.
1184	
1185	18.2. During validation, laboratories may find it helpful to create a subset of validation
1186	samples for the purpose of subsequent validation testing when the need arises.
1187	
1188	18.2.1. These samples may include those that are at the limits of the current validation, in
1189	addition to those samples covering the range of variation.
1190	
1191	18.2.1.1. For example, those profiles eliciting adventitious support for non-
1192	contributors or demonstrating a lack of support for true contributors could
1193	be identified and retained for sensitivity and specificity testing if a software
1194	developer makes a modification to the modeling, LR calculations or
1195	algorithms.
1196	
1197	
1198	
1199	
1200	
1201	
1202	
1203	

1204	APPENDIX A: EXAMPLE PGS VALIDATION STUDY
1205	
1206	The following study examples are informational and are not intended to dictate the types and
1207	numbers of samples every laboratory must use to satisfy each study. Validation studies
1208	cannot account for all scenarios that may arise during casework examinations; however,
1209	laboratories should attempt to cover the range of variation expected to be encountered with
1210	forensic samples. Each laboratory seeking to evaluate a new method must determine which
1211	validation studies are relevant to the methodology, in the context of its application, and
1212	determine the experiments required to satisfy each study. Following implementation,
1213	laboratories should review results and if necessary, conduct supplemental studies to improve
1214	workflow, thresholds and/or interpretations.
1215	
1216	System Parameters (430 samples total)
1217	Analytical Threshold
1218	Drop-in
1219	Stutter expectations
1220	Saturation Limit
1221	Allelic peak height variation (inter- and intra-locus) and stutter peak heigh variation
1222	
1223	NOTE: This data set must be different than what is used to validate the software
1224	
1225	Analytical Threshold:
1226	- Determined during the validation of the genetic analyzer.
1227	
1228	Drop-in: (150 samples)
1229	- A total of 150 negative controls are evaluated, these include extraction reagent blanks and
1230	amplification negative controls
1231	- If the amplification and CE analysis has not changed, previous extraction reagent blanks
1232	and amplification negative controls from casework analysis can be evaluated
1233	- In addition, extra extraction reagent blanks can be extracted along with the samples used
1234	for the PGS validation and extra amplification negative controls can be amplified along
1235	with the samples used for the PGS validation
1236	- The peak heights and number of drop-in instances were recorded.
1237	
1238	Stutter Expectations: (100 samples)
1239	- Samples from 100 different donors and/or known reference samples are amplified for the
1240	multiplex kit as previously determined by the laboratory. A variety of donor DNA
1241	profiles are included to maximize coverage of alleles and stutter types. The samples are
1242	run on the genetic analyzer and analyzed without stutter filters using a lowered analytical
1243	threshold to maximize stutter observations.
1244	- Instances of stutter being modeled (e.g., back, forward, double-back and half-back
1245	stutter) are recorded.
1246	- Stutter ratio values are calculated for each allele at each locus.

1247	-	Stutter ratios are graphed by allele and/or by longest uninterrupted sequence (LUS) of
1248		repeat units (where relevant) versus percent stutter calculated. Results are evaluated to
1249		determine best fit regressions for each locus and each stutter type.
1250	-	The maximum expected stutter ratio can also be determined from this data set.
1251		
1252		
1253	Satura	tion Limit: (48 samples)
1254	-	Option 1: A series of six known samples at varying template amounts that are expected
1255		to result in saturation are used. The samples are amplified in duplicate and run with
1256		standard injection times on each genetic analyzer in the laboratory.
1257	-	Option 2: A series of six known samples of standard input template amount are run using
1258		standard injection times to determine stutter ratios. The samples are then run with
1259		increased injection times until the peaks demonstrate saturation.
1260	-	The data is analyzed without stutter filters. It may be necessary to lower the AT to
1261		capture more stutter data.
1262	-	Samples are interpreted, and peak heights of parent and back stutter peaks are recorded.
1263		Peak heights augmented by stutter are excluded from the data.
1264		• Option 1: Using the average back stutter ratio expectation values captured within
1265		the stutter study, the observed parent peak heights are compared to the expected
1266		parent peak heights.
1267		 Plot the observed parent allelic peak height against the expected parent
1268		peak height. The point at which the expected parent peak height diverges
1269		represents the saturation level for that instrument.
1270		• Option 2: The observed back stutter ratio from the standard injection are
1271		compared to the stutter ratios obtained from the increased injection times to
1272		identify when the data becomes saturated.
1273		Plot the observed back stutter ratio from the standard injection against the
1274		stutter ratios from the increased injection times. The point at which the
1275		observed stutter ratios diverge represents the saturation level for that
1276		instrument.
1277	-	For laboratories with multiple instruments, the lowest saturation limit may be used for all,
1278		or the saturation limit can be instrument specific. Alternatively, some data analysis
1279		software will identify peaks that have saturated the genetic analyzer's detector and result
1280		in off-scale data. Peak heights of alleles identified as off-scale by the data analysis
1281		software are recorded.
1282	-	Alternatively, some data analysis software will identify peaks that have saturated the
1283		genetic analyzer's detector and result in off-scale data. Peak heights of alleles identified
1284		as off-scale by the data analysis software are recorded.
1285		

1288

1289 Allelic and Stutter Peak Height Variation: (132 samples)

- For a laboratory that targets samples with 50pg total DNA to an optimum target of 1 ng, mixture components will contribute only a fraction of the total DNA; therefore, samples from six (6) different donors are amplified at multiple target amounts ranging from 2.0 ng to 8 pg (refer to Example Dilution Series below) for a total of 132 amplifications.
- Samples are run on both genetic analyzers used by the laboratory. Profiles are analyzed without stutter filters and using a lowered analytical threshold to capture allelic and stutter peaks below threshold.
- Labels for allelic peaks and their associated stutter, along with apparent drop-in peaks, are retained while labels for other artifacts are removed.
- The data from these samples can be used by the PGS parameter setting module to
 generate variance parameters and distributions for allelic peak height, intra-locus and
- inter-locus peak height variability and stutter peak height variability.

1302 1303

1305

1304 Internal Validation Testing

1306 Functional Testing:

- Eight DNA profiles consisting of three single source and five mixture profiles were utilized for functional testing (see table below)
 The mixture profiles were designed to contain optimal quantities of DNA and readily discernable mixture proportions when assessed manually
 The DNA profiles were imported into the software using a designated file type and format
- 1312 format
 1313 Import file format(s) documented
 1314 One instance of an off-ladder allele (OL) that is not assigned an allele call is included in the import file

1316	• One instance of an allele value labeled as "<6" was included in the import file
1317	• After import and analysis, the data (allele, peak height, and size) for the evidence
1318	and reference profiles analyzed were confirmed in the report ensure it was
1319	imported properly
1320	- Parameters and settings
1321	• A single source DNA profile was analyzed, and the parameters and settings listed
1322	in the resulting report were compared to the expected values to confirm they were
1323	entered correctly
1324	• Each of the adjustable parameters (e.g., MCMC accepts, seed number, HPD
1325	calculations, population databases) were changed for an analysis
1326	• The analysis was subsequently repeated, and the parameters and settings were
1327	checked to verify that those that were adjusted reverted to the default settings
1328	- General profile deconvolution
1329	• The eight DNA profiles were analyzed
1330	• The results of the deconvolution were compared to the experimental set-up
1331	of the DNA samples and the manual interpretation of the DNA profiles
1332	• LRs were assigned for the known contributors and one known unrelated non-
1333	contributor
1334	The assigned LRs of the known contributors were evaluated to determine
1335	if the magnitude of the LR was reflective of the observed contribution to
1336	the DNA profile (e.g., assigned LRs for minor component contributors to a
1337	mixed DNA profile were less than the assigned LRs for the major
1338	component contributors)
1339	 The assigned LRs for the known non-contributors were all zero or less
1340	than 1
1341	
1342	- Reports
1343	• The reports for each analysis were reviewed to ensure completeness:
1344	 All expected sections
1345	 Diagnostics
1346	 Results of modeling
1347	 Deconvolution results
1348	 LRs for each selected population
1349	 Settings and parameters, including an indicator for adjusted settings and
1350	parameters
1351	
1352	
1353	Ensure las Ensure d'an al Tartina Samuelan Chant
1354	Example: Functional Testing Summary Chart
1322	

	Data Import	Parameter	Deconvolution	LR	Report
		S			
Single	Error noted at	All	Consistent with	K1: 1.4 E30 (H ₁)	All sections/info
Source 1 w/ "<6"	import, correction made and	maintained	expectations	K2: Excluded	present
	completed				
	analysis				

Single Source 2 w/ "OL"	Unassigned OL- failure of all subsequent data to import, correction made and analysis completed, all types	All maintained	Consistent with expectations	K3: 8.0 E27 (H1) K4: Excluded K5: Excluded	All sections/info present
Single Source 3 – adjusted parameters and settings	All types	Adjusted	Consistent with expectations	K6: Excluded K7: 2.2E24 (H1)	All sections present/info present, adjusted settings and parameters indicated
Single Source 3	All types	All maintained, back to default	Consistent with expectations	K6: Excluded K7: 2.2 E24 (H ₁)	All sections/info present
1:1 Mixture	All types	All maintained	Mixture proportions are not consistent with a 1:1 mixture	K8: Excluded K9: 3.7 E20 (H ₁) K10: 4.1 E21 (H ₁)	All sections/info present
5:1 Mixture	All types	All maintained	Consistent with expectations	K11: 5.5 E26 (H ₁) K12: 8.1 E8 (H ₁) K13: Excluded	All sections/info present
2:1 Mixture	All types	All maintained	Consistent with expectations	K14: 7.2 E17 (H ₁) K15: 1.6 E10 (H ₁) K16: Excluded	All sections/info present
5:3:1 Mixture	All types	All maintained; Analyze a second time with additional accepts	Consistent with expectations	K17: 9.7 E23 (H ₁) K18: 6.8 E15 (H ₁) K19: 3.9 E7 (H ₁) K20: 5.4 E-14	All sections/info present
5:5:1 Mixture	All types	Additional accepts setting mistakenly retained	Consistent with expectations	K21: 4.8 E19 (H ₁) K22: 3.6 E20 (H ₁) K23: 2.2 E6 (H ₁) K24: Excluded	All sections/info present

Reliability Testing:

- The physical reliability of the software was evaluated during the *Functional Testing* (see above):
 - Software developer specifications were considered when installing the PGS in the testing environment (RAM, processor, etc.)

1363 1364	• For each analysis run, the parameters were reviewed to ensure they did not change between analyses.
1365	• Any changes that were made to parameters returned to the default value whenever a
1366	subsequent analysis was conducted.
1367	• Changes to parameters were confirmed as readily displayed in the software
1368	results/report.
1369	• Input files containing "OL" or other artifact labels were identified at analysis set-up.
1370	- NOC limitations
1371	• Equal two-person, three-person, four-person, five-person, and six-person mixtures
1372	(1:1, 1:1:1, etc.) were prepared, analyzed, and the inputs created for the PGS.
1373	• The mixtures were analyzed sequentially until the PGS was not able to complete the
1374	analysis.
1375	• Optional parameters such as low memory mode were employed to determine if the
1376	analysis could be successfully completed.
1377	- Incorrect NOC
1378	• A three-person mixture with six alleles at multiple loci was analyzed using a NOC
1379	= 2
1380	• The analysis reported an error and could not be completed
1381	
1382	Accuracy:
1383	- Accurately assign mixture proportions
1384	• The two- and three-person mixtures from the <i>Functional Testing</i> (1:1, 2:1, 5:1,
1385	5:3:1, and 5:5:1) were visually evaluated to estimate the mixture proportions by
1386	examining loci containing the maximum number of expected alleles.
1387	 The visual estimations were then compared to the PGS-generated mixture
1388	proportions which were consistent.
1389	 Genotype assignments conform to qualitative expectations
1390	• The two- and three-person mixtures from the <i>Functional Testing</i> (1:1, 2:1, 5:1,
1391	5:3:1, and 5:5:1) were visually evaluated to develop approximate expectations for
1392	the weightings for possible genotype sets.
1393	• The visual estimations were then compared to the PGS-generated weights which
1394	were generally consistent. Any inconsistencies were noted, and possible causes
1395	listed.
1396	- LR is accurately calculated (single source)
1397	• Five high quality single source DNA profiles (i.e., not exhibiting drop-in, drop-
1398	out, or alleles in stochastic RFU range) were compared to the known contributor's
1399	reference sample and an LR was assigned by the PGS.
1400	• A random match probability (RMP) was calculated for each comparison using
1401	another statistical program validated by the laboratory. The RMP was calculated
1402	and recorded using the same allele frequencies, treatment of rare alleles, and theta
1403	
1404	• A comparison was made between the LK and I/KMP.
1405	- LK is accurately calculated (mixture)
1406	• Evaluated in the <i>Functional Testing</i> above.

- LRs assigned to the known contributors to the two- and three-person mixtures
 were evaluated to determine if they conformed to the qualitative expectations
 based on the LR reflective of informed expectations based on the quantity and
 quality of the data should be obtained.
- 1412 *Sensitivity:*
- 1413 This study is based on the laboratory's policy that mixtures containing up to four individuals will be interpreted and used for comparison purposes.
- A set of mixtures using known contributors was prepared as described in the table below.
 The mixtures covered the following:
- 1416 1417

1419

1421

- NOC up to 5
- Varying template amounts (total template from 0.01 ng to 2.0 ng)
- Varying mixture proportions
- Varying levels of degradation
 - Varying levels of allele sharing
 - All samples prepared, amplified, and analyzed in duplicate
- 1422 1423
- 1424

Contributor Ratio	Total DNA Template (ng) (Template amplified for each set, for a total of 3 different donor sets)	Number of Amplifications
Single Source Profiles:		
1	2.0, 1.0, 0.75, 0.5, 0.25, 0.1, 0.05, 0.025, 0.01	18
Total		18
Two-Person Mixtures:		
95:1	2.0, 1.0, 0.5	6
50:1	2.0, 1.0, 0.5, 0.25	8
20:1	2.0, 1.0, 0.5, 0.15	8
10:1	2.0, 1.0, 0.5, 0.25, 0.1	10
5:1	2.0, 1.0, 0.5, 0.25, 0.1, 0.05	12
3:1	2.0, 1.0, 0.5, 0.25, 0.1, 0.01	12
2:1	2.0, 1.0, 0.5, 0.25, 0.1, 0.01	12
1:1	2.0, 1.0, 0.5, 0.25, 0.1, 0.01	12
Total		80

Three-Person Mixtures:		
96:1:1	2.0, 1.0, 0.5	6
64:32:1	2.0, 1.0, 0.5	6
32:1:1	2.0, 1.0, 0.5, 0.25	8
16:1:1	2.0, 1.0, 0.5, 0.25, 0.1	10
8:1:1	2.0, 1.0, 0.5, 0.2, 0.075	10
4:2:1	2.0, 1.0, 0.5, 0.15, 0.05	10
4:1:1	2.0, 1.0, 0.5, 0.15, 0.05	10
2:1:1	2.0, 1.0, 0.5, 0.15, 0.05	10
1:1:1	2.0, 1.0, 0.5, 0.15, 0.05	10
Total		80
Four-Person Mixtures:		
96:4:1:1	2.0, 1.0, 0.5	6
64:8:1:1	2.0, 1.0, 0.5	6
32:4:1:1	2.0, 1.0, 0.5, 0.25	8
16:1:1:1	2.0, 1.0, 0.5, 0.25, 0.1	10
8:1:1:1	2.0, 1.0, 0.5, 0.25, 0.075	10
4:3:2:1	2.0, 1.0, 0.75, 0.5, 0.25	10
4:2:1:1	2.0, 1.0, 0.5, 0.25, 0.1	10
4:1:1:1	2.0, 1.0, 0.5, 0.25, 0.1	10
2:1:1:1	2.0, 1.0, 0.5, 0.15, 0.05	10
1:1:1:1	2.0, 1.0, 0.5, 0.15, 0.05	10
Total		90
Five-Person Mixtures:		
50:4:2:1:1	2.0, 1.0, 0.5	6
10:2:2:1:1	2.0, 1.0, 0.5, 0.25, 0.1	10

5:2:2:1:1	2.0, 1.0, 0.25, 0.075	8
4:1:1:1:1	2.0, 1.0, 0.25, 0.05	8
Total		32
Degraded Profiles:		
Single source – moderately degraded	2.0, 1.0, 0.75, 0.5, 0.25, 0.1, 0.05	14
Single source – heavily degraded	2.0, 1.0, 0.75, 0.5, 0.25, 0.1, 0.05	14
Two-person mixture – major degraded (2:1, 5:1, 10:1, 20:1)	1.0, 0.5, 0.25	24
Two-person mixture – minor degraded (2:1, 5:1, 10:1, 20:1)	1.0, 0.5, 0.25	24
Three-person mixture – major degraded (4:2:1, 2:2:1, 8:1:1, 10:5:1)	1.0, 0.5, 0.25	24
Three-person mixture – mid degraded (4:2:1, 2:2:1, 8:1:1, 10:5:1)	1.0, 0.5, 0.25	24
Three-person mixture – minor degraded (4:2:1, 2:2:1, 8:1:1, 10:5:1)	1.0, 0.5, 0.25	24
Four-person mixture – major degraded (4:3:2:1, 4:2:1:1, 8:4:1:1, 20:10:5:1)	1.0, 0.5, 0.25	24
Four-person mixture – mid degraded (4:3:2:1, 4:2:1:1, 8:4:1:1, 20:10:5:1)	1.0, 0.5, 0.25	24
Four-person mixture – minor degraded (4:3:2:1, 4:2:1:1, 8:4:1:1, 20:10:5:1)	1.0, 0.5, 0.25	24
Total		220

Allele Sharing		
Parent / Child	2.0, 1.0, 0.5, 0.25, 0.1	45
(5:1, 3:1, 1:1)		
Parent/Child/Unrelated	2.0, 1.0, 0.5, 0.25, 0.1	45
(5:3:1, 3:3:1, 1:1:1)		
Parent/Parent/Child	2.0, 1.0, 0.5, 0.25, 0.1	45
(5:3:1, 3:3:1, 1:1:1)		
Parent/Parent/Child/ Unrelated	2.0, 1.0, 0.5, 0.25, 0.1	45
(10:5:3:1, 5:5:3:1,		
1:1:1:1)		
Total		180
Grand Total		640

-	Each of these profiles are analyzed using the apparent NOC and the apparent NOC+1 and
	the apparent NOC-1.
-	Comparisons to each of the knowns are performed for all the deconvoluted contributors
	(NOC = N, N+1, and N-1).
-	Plots of calculated LR values versus template amount, average peak height (APH),
	maximum number of obligate alleles, contributor proportion (or percent contribution),
	effect of replicates, etc. can inform the sensitivity of the PGS and the context of the
	magnitude of the LR. The following examples are not all-inclusive.
	• Plot the log (LR) values against the APH per contributor. The APH per known
	contributor is determined from the unmasked and unshared alleles. Where no
	DNA from the individual was detected within the profile, the APH may be set to
	half the AT. The APH per contributor value is used since this is the most
	comparable to the information an analyst will have with forensic casework and is
	therefore the most relevant explanatory variable to plot.
	• Data from all true contributors from mixtures with the same NOC are plotted with
	the $\log +(LR)$ on the y-axis and the APH on the x-axis. This plot can provide
	context of the LR magnitude as compared to the APH of each contributor.
	• Tabulate the fraction of true-contributor LR values that fall within 'bins' on either
	side of LR=1 and compare to specificity study results (see below). Instances
	-

where a true contributor exhibits a LR less than one should be addressed through a review of the data to determine if the results are as expected.
Assess the impact of the NOC on sensitivity by plotting LRs resulting from N+1 and N-1 analyses, as compared to the true NOC.

1449	-	Sensitivity can be expressed globally across the entire study and across each condition in
1450		the validation study. The laboratory should assess the global sensitivity of the system as
1451		well as the sensitivity of each condition or component part of the system.
1452	-	Any analyses demonstrating divergence from reasonable expectations and/or known
1453		values should be investigated, with causes and resolutions documented. The lab should
1454		determine if the discordant data will remain within the dataset or if additional data is
1455		needed to gain an understanding of the circumstances which may affect the analysis.
1456		
1457	Specifi	city:
1458	-	For each validation DNA profile (created in the <i>sensitivity study</i>) tested for the <i>Specificity</i>
1459		study, a set of known non-contributors was compared to the deconvoluted DNA profile.
1460		• A database of 10,000 in silico generated non-contributor DNA profiles is used to
1461		evaluate specificity.
1462		• Using the same software settings as for a known contributor (see sensitivity
1463		study), an LR value is calculated and recorded for each non-contributor being
1464		evaluated against the validation profile.
1465		• The LR values per non-contributor and template amount of the lowest contributor
1466		for each DNA profile are tabulated and/or plotted. These are combined with the
1467		sensitivity plots to include both contributors and non-contributors within the same
1468		plot.
1469		• Instances where the non-contributor comparison results in a LR greater than one
1470		are recorded.
1471		• The range of LRs from non-contributors (e.g., minimum and maximum) is
1472		assessed.
1473		• The exact LR values are recorded to provide further context as to the LR
1474		magnitude in relation to profile type and validation conditions (e.g., NOC,
1475		contributor proportion, contributor DNA template, level of degradation, etc.).
1476		• Specificity is calculated as the proportion of non-contributors with a LR less than
1477		one (those favoring H2 and exclusions) divided by the total number of
1478		comparisons.
1479		 Specificity can be expressed globally across the entire study or for a
1480		condition(s) in the validation study.
1481		• Note that the specificity calculation does not define a proportion of
1482		non-contributors expected to produce A LR>1 for any specific
1483		sample. The calculation is simply a metric for the validation to
1484		determine whether the software can effectively discern true
1485		contributors from non-contributors.
1486		• Further methods of data analysis to consider:
1487		 Plots of LR values versus template amount, average peak height,
1488		contributor proportion (or percent contribution), and effect of replicates
1489		can be considered.
1490		\circ For instance, plot the log (LR) values against the average peak
1491		height (APH) per contributor. The APH is determined from the
1492		unmasked and unshared alleles.
1493		\circ Where no DNA from the individual was detected within the
1494		profile, the APH may be set to half the AT.

1495	(The APH per cor	tributor value is used since this	is the most
1496		comparable to the	e information an analyst will ha	ve with forensic
1497		casework and is t	herefore the most relevant expla	anatory variable to
1498		plot.		
1499	C	Tabulate the frac	tion of non-contributor log (LR)	values that fall
1500		within 'bins' on e	either side of LR=1. APH for no	on-contributors to
1501		a given profile is	taken as the minimum APH am	ong the known
1502		donors to the pro	file. Instances where a non-con	tributor exhibits
1503		an LR greater tha	n 1 should be addressed through	h a review of the
1504		data to determine	if the results are as expected.	
1505	C	Assess the impac	t of the NOC on specificity by p	olotting LRs
1506		resulting from N-	+1 and N-1 analyses as compare	ed to the true
1507		NOC.		
1508				
1509	Precision:			
1510	 Eight DNA profiles 	that span the labora	tory's intended application were	e selected for the
1511	precision studies an	d are listed below. T	These samples were amplified as	s part of the
1512	laboratory's sensiti	vity and specificity s	tudies.	
1513				_
	I	Mixture Ratio	Template (ng)	_
		1:1:1:1	1	_
		4:3:2:1	0.75	-
		3:2:1	0.5	-
		1:1	1	-
		1.1	0.5	-
		Single source	0.25	-
		Single source	0.10	-
1514		Shigle Source	0.10	
1515				
1516	Deconvolut	ion was performed o	n each of the above listed DNA	profiles using
1517	5 000 50 00	0. and 100,000 acce	pts per chain	promos weing
1518	• LRs were as	signed to each of th	e known contributors to the DN	A profiles using
1510	each of the	deconvolutions	e known contributors to the Div	r promes using
1520	• The LRs an	d diagnostic values i	ncluding the template amounts	mixture
1520	proportions	and genotype weigh	the were evaluated for each deco	nvolution
1521	Based on th	is data and the manu	facturer's recommendation 50	000 accents per
1522	• Based off the	selected as the defau	lt value	ooo accepts per
1527	The precision of the	deconvolutions and	IL VALUE.	ated by
1525 1525	- The precision of the	onvolutions and I D	calculations for each contributor	aicu Uy r as described in
1525	the table below:			
T770				

Mixture Ratio	Total Template (ng)	Number of Post Burn-in MCMC Accepts per Chain	Number of Analyses
1:1	1	50,000	5
1:1	0.5	50,000	5
1:1	0.25	50,000	5

		3:2:1	0.5	50,000	5
		4:3:2:1	0.75	50,000	5
1528 1529 1530		• Ti m	he range of LRs and ixture proportions f	I diagnostic values including the for each set of replicate analyses v	template amounts, and was evaluated.
1531					
1532	Add	tional Evalu	ations		
1532	Auui	Fyaluate	the range of diagno	stic values for deconvolutions us	ing the correct and incorrec
1535		NOC	the range of diagnos	stie values for deconvolutions us	ing the correct and meorree
1536	_	Evaluate	the effectiveness of	the use of a confidence interval of	calculation or its equivalent
1537		if availab	le		·····1·····
1538	-	Evaluate	the use of informed	priors if available	
1539	-	Evaluate	the use of other use	r-selected parameters such as the	maximum degradation
1540		value			
1541					
1542	Refe	rences and	Suggested Readings	5	
1543					
1544	An a	issessment of	f the performance of	f the probabilistic genotyping sof	tware EuroForMix: Trends
1545	in lil	celihood rati	os and analysis of T	ype I & II errors. Benschop CCC	, Nijveld A, Duijs FE,
1546	Sijer	T. Forensic	Sci Int Genet. 2019	9 Sep; 42:31-38. doi: 10.1016/j.fs	igen.2019.06.005. Epub
1547	2019	9 Jun 10. PM	ID: 31212207		
1548 1549	Application of Random Match Probability Calculations to Mixed STR Profiles, Bille T, Bright J A, Buckleton J. Journal of Forensic Sciences. 2013; 58; 474-85				
1550 1551 1552	Establishing the limits of TrueAllele [®] Casework: a validation study. Greenspoon, S.A., Schiermeier-Wood, L., and Jenkins, B.C. Journal of Forensic Sciences, 60(5):1263-1276, 2015				
1552 1553 1554 1555 1556 1557 1558 1559 1560	Inter R, K C, B Cate Gent Noël Ritzl 24, c	nal validatio ruijver M, K uettner C, M lla D, Lien H tile S, Kaplat I S, Malsom heimer M, B loi: 10.1016/	on of STRmix [™] - A Celly H, McGovern G IcWilliams S, McKe E, O'Connor C, Dun n M, Hassler M, Mc S, Myers S, Welti S eamer V, Taylor DA (i fsigen 2018.01.00	multi laboratory response to PC. C, Magee A, McWhorter A, Ciec enna C, Gallacher C, Mallinder B can G, Bundy J, Echard J, Lowe Donald N, Hulme P, Oefelein RI G, Moretti T, McMahon T, Grill T A, Buckleton JS. Forensic Sci Int 3, Epub 2018 Jan 8, PMID: 2936	AST. Bright JA, Richards ko A, Peck B, Baumgartne , Wright D, Johnson D, J, Stewart J, Corrado K, H, Montpetit S, Strong M, ', Kalafut T, Greer- Genet. 2018 May; 34:11- 7014
1561	21.0	.01. 10.1010/	J.151gen.2010.01.00	5. Epub 2010 Juli 6. 1 Milb. 2990	/011
1562	Inter	nal validatio	on of STRmix™ for	the interpretation of single sourc	e and mixed DNA profiles
1563	Tam	yra R Moret	ti, Rebecca S Just. S	Susannah C Kehl, Leah E Willis.	John S Buckleton, Jo-Anne
1564	Brig	ht, Duncan A	A Taylor, Anthony J	Onorato; Forensic Sci Int Genet	ics 2017 Jul;29:126-144
1565	0				
1566	Qual	lity Assurance	ce Standards for For	ensic DNA Testing Laboratories	; Federal Bureau of
1567	Inve	stigation. (20	020) available at <u>htt</u>	ps://www.fbi.gov/about-us/lab/co	odis/qas-standards-for-
1568 1569	forei	<u>nsic-dna-test</u>	ing-laboratories-eff	ective-07-01-2020.	

1570	STRmix [™] put to the test: 300 000 non-contributor profiles compared to four-contributor DNA
1571	mixtures and the impact of replicates. Noël S, Noël J, Granger D, Lefebvre JF, Séguin D.
1572	Forensic Sci Int Genet. 2019 Jul; 41:24-31. doi: 10.1016/j.fsigen.2019.03.017. Epub 2019 Mar
1573	21. PMID: 30947115
1574	
1575	Validating TrueAllele [®] DNA Mixture Interpretation. Mark W. Perlin, M.D., Ph.D.; Matthew M.
1576	Legler, B.S.; Cara E. Spencer, M.S.; Jessica L. Smith, M.S.; William P. Allan, M.S.; Jamie L.
1577	Belrose, M.S.; and Barry W. Duceman, Ph.D. Journal of Forensic Sciences. November 2011.
1578	56:6
1579	
1580	
1581	
1582	
1583	Informational Web Site: Additional information may be obtained from the following web site:
1584	https://strbase.nist.gov/

	Document Version	Revision History
	XXXXX, 2024	Original (Published on SWGDAM website). Replaces the 2015
		SWGDAM Guidelines for the Validation of Probabilistic Genotyping
		Systems
1587		
1588		